The crystal structure of $\operatorname{Tm}_{5} \mathrm{Re}_{\mathbf{2}} \mathbf{O}_{\mathbf{1 2}}$

H. Ehrenberg, ${ }^{a} *$ T. Hartmann, ${ }^{a}$ G. Wltschek, ${ }^{a}$ H. Fuess, ${ }^{a}$ W. Morgenroth ${ }^{b}$ and H.-G. Krane ${ }^{c}$
${ }^{a}$ Fachgebiet Strukturforschung, Fachbereich Materialwissenschaft, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, ${ }^{b}$ Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany, and ${ }^{c}$ Mineralogisch-Petrologisches Institut, Universität Bonn, Poppelsdorfer Schloss, D-53115 Bonn, Germany. E-mail: helmut@steno.st.mw.tu-darmstadt.de

(Received 25 July 1998; accepted 12 April 1999)

Abstract

The crystal structure of $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, pentathulium dirhenium dodecaoxide, was determined by synchrotron diffraction on a reticular merohedral twin, revealing space group $C 2 / m$ with $a=12.3717$ (7), $b=5.6744$ (3), $c=$ 7.4805 (4) A, $\beta=107.816$ (2) ${ }^{\circ}$ and $Z=2$. Distorted ReO_{6} octahedra form chains with alternating rheniumrhenium distances of 2.455 (1) and 3.219 (1) A. Early reports on $\mathrm{Ln}_{2} \mathrm{ReO}_{5}$ compounds are critically reviewed in the light of our results for $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$.

1. Introduction

Crystalline phases of ternary oxides in the system $\mathrm{Ln}_{2} \mathrm{O}_{3}-\mathrm{ReO}_{2}-\mathrm{Re}_{2} \mathrm{O}_{7}$, with Ln a lanthanide or yttrium, can be characterized by the Ln:Re ratio and the formal oxidation state of rhenium. The latter can vary from +4 to +7 , so that a wide range of different compositions and structure types may occur. Of particular interest are those compounds with a non-integral value of the formal
oxidation state of rhenium as in that case some kind of metallic bond is expected. Structurally well characterized examples are the lanthanum compounds $\mathrm{La}_{3} \mathrm{Re}_{2} \mathrm{O}_{9}$ (Besse et al., 1978), $\mathrm{La}_{4} \mathrm{Re}_{6} \mathrm{O}_{19}$ (Longo \& Sleight, 1968; Morrow \& Katz, 1968) and $\mathrm{La}_{3} \mathrm{Re}_{2} \mathrm{O}_{10}$ (Torardi \& Sleight, 1986). For all these compounds, rheniumrhenium pairs with shorter bond lengths than in metallic rhenium $(2.76 \AA)$ are observed. The title compound belongs to the group of compounds with general composition $\mathrm{Ln}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ and is another example with rhenium in a formal oxidation state of +4.5 . A structure model, assuming space group $P 2_{1} / m$, has been reported for $\mathrm{Dy}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, but a correct refinement was prevented by twinning (Baud et al., 1983). A better description is given for $\mathrm{Ho}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, based on a centred monoclinic cell with linear chains of edge-sharing distorted ReO_{6} octahedra (Heumannskämper \& Jeitschko, 1987). Within these chains, rhenium-rhenium pairs exist with bond lengths of 2.437 A. Unfortunately, neither atomic parameters nor intensity data are reported, so that an isotypic relation between $\mathrm{Ho}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ and other

Fig. 1. Scanning electron micrograph of $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ crystals.
$\mathrm{Ln}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ compounds cannot be deduced from that work. In the present contribution, we report on the crystal structure of $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, determined from synchrotron diffraction data. Different structure types of rare earth rhenium oxides with compositions near $\mathrm{Ln}_{2} \mathrm{ReO}_{5}$ are proposed in the literature (Muller \& Roy, 1969). However, deviations from this stoichiometry could not be excluded for $\mathrm{Y}_{2} \mathrm{ReO}_{5}, \gamma-\mathrm{Gd}_{2} \mathrm{ReO}_{5}$, $\mathrm{Dy}_{2} \mathrm{ReO}_{5}, \mathrm{Er}_{2} \mathrm{ReO}_{5}$ and $\mathrm{Yb}_{2} \mathrm{ReO}_{5}$. The suggested compositions and the interpretation of IR spectroscopy results (Savel'eva et al., 1977) have to be reconsidered in the light of our results.

2. Experimental and analysis of data

The samples investigated have been synthesized by subsolidus reaction of $0.0005 \mathrm{~mol} \mathrm{Tm}_{2} \mathrm{O}_{3}$ (Alfa, 99.99%) and $0.0005 \mathrm{~mol} \mathrm{ReO}_{2}$ (Aldrich, 99.9%). The reactants were intimately mixed in an agate mortar under acetone and sealed in welded $\mathrm{Pt} / \mathrm{Rh}(90 / 10)$ tubes. After heating the tubes under argon atmosphere from room temperature to 1673 K at a rate of $300 \mathrm{~K} \mathrm{~min}^{-1}$, the temperature was held for 12 h before cooling to room temperature at a rate of $180 \mathrm{~K} \mathrm{~min}^{-1}$. The reaction product was analysed by scanning electron microscopy and contained small crystals with prismatic shape, as shown in Fig. 1. One crystal of $100 \mu \mathrm{~m}$ length and about $10-15 \mu \mathrm{~m}$ diameter was isolated and used for diffraction studies at room temperature (see Table 1). Data collection was performed using the κ diffractometer at beamline F1 of HASYLAB, Germany, which is situated at a bending magnet. The beam was monochromated to a wavelength of $0.4275 \AA$ by a double-crystal $\mathrm{Si}(111)$ monochromator; higher harmonic rejection was achieved by detuning of the second monochromator crystal. The beam was unfocussed and defined by a slit system to a cross section of $0.12 \times 0.12 \mathrm{~mm}$. Its intensity was monitored by a polarimeter with NaI scintillation counters, and a feedback system on the second monochromator crystal ensured a constant incident beam intensity. Several data sets were collected with a crystal-to-detector distance of 4 cm using a 1 K Smart detector from Bruker/AXS (Karlsruhe, Germany) with a 0.1° rotation per frame and exposure times of 2 and 5 s . The ω scans at six different φ settings in steps of 60° covered 90° in ω, ensuring a coverage of 100% and a redundancy higher than 12. The integration was performed with the SAINT program from Bruker/AXS, and diffractedbeam absorption was fitted by spherical harmonic functions using restrained full-matrix least squares following the method of Blessing (1995).

The observed reflections are compatible with the space groups $P 2_{1} / m$ and $P 2_{1}$ with $a=7.4805$ (4), $b=$ 5.6744 (3), $c=12.3717$ (7) \AA and $\beta=107.816$ (2) ${ }^{\circ}$. However, a structure solution based on either of these space groups was not successful. In both cases unrealistic short $\operatorname{Re}-\mathrm{O}$ bonds of $\sim 1 \AA$ were derived and the

Table 1. Experimental details
Crystal data

Chemical formula	$\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$
Chemical formula weight	1409.05
Cell setting	Monoclinic
Space group	$C 2 / m$
$a(\AA)$	$12.3717(7)$
$b(\AA)$	$5.6744(3)$
$c(\AA)$	$7.4805(4)$
$\beta\left({ }^{\circ}\right)$	$107.816(2)$
$V\left(\AA^{3}\right)$	$499.96(5)$
Z	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	9.360
Radiation type	Synchrotron
Wavelength (\AA)	0.42750
No. of reflections for cell para-	460
\quad meters	
θ range $\left(^{\circ}\right)$	$3.43-38.89$
$\mu\left(\mathrm{~mm}^{-1}\right)$	16.587
Temperature (K)	$293(2)$
Crystal form	Needle
Crystal colour	Black

Data collection	
Diffractometer	CCD
Data collection method	ω scans
Absorption correction	Empirical (Blessing, 1995)
$T_{\min }$	0.19
$T_{\max }$	0.85
No. of measured reflections	8671
No. of independent reflections	4961
No. of observed reflections	4165
Criterion for observed reflections	$I>2 \sigma(I)$
$R_{\text {int }}$	0.0532
$\theta_{\max }\left({ }^{\circ}\right)$	38.89
Range of h, k, l	$-36 \rightarrow h \rightarrow 36$
	$-11 \rightarrow k \rightarrow 16$
	$-21 \rightarrow l \rightarrow 20$

Refinement

Refinement on
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
$w R\left(F^{2}\right)$
S
No. of reflections used in refinement
No. of parameters used
Weighting scheme
$(\Delta / \sigma)_{\max }$
$\Delta \rho_{\max }\left(\mathrm{e} \AA^{-3}\right)$
$\Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
Extinction method
Source of atomic scattering factors

$$
\left.\begin{array}{l}
F^{2} \\
0.0682 \\
0.1518 \\
1.246 \\
4961
\end{array}\right\} \begin{aligned}
& 52 \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0103 P)^{2}\right. \\
\quad+1.6684 P] \text {, where } P=\left(F_{o}^{2}\right. \\
\left.\quad+2 F_{c}^{2}\right) / 3 \\
<0.0001 \\
14.225 \\
-12.324 \\
\text { None } \\
\text { International Tables for }
\end{array}
\end{aligned}
$$

Crystallography (1992, Vol. C)
Computer programs Structure solution

SHELXS97 (Sheldrick, 1990)
SHELXL97 (Sheldrick, 1997)
reliability values remained as high as about 15%. Therefore, the possibility of twinning was taken into account, which was further supported by unusual extinction rules: all reflections with h even and $k+l$ odd are systematically absent. This can be explained by
centring and a twinning law based on two domains, linked to each other by a rotation through 180° about the c^{*} axis. To transform to the standard setting, the a and c axes are interchanged, resulting in C symmetry with $a=12.3717$ (7), $b=5.6744$ (3),$c=7.4805$ (4) \AA and $\beta=107.816(2)^{\circ}$. A ratio of 3.4:1 between domains 1 and 2 was refined from the intensities of the non-overlapping reflections and allowed for the separation of the intensities of overlapping reflections. The $h k l$ set for the dominant domain with 4961 unique reflections and $R_{\mathrm{int}}=$ 5.32% was further used for structure solution and refinement with SHELXS97 (Sheldrick, 1990) and SHELXL97 (Sheldrick, 1997), respectively.

Table 2. Fractional atomic coordinates and equivalent

3. Results and discussion

The atomic parameters of $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ are summarized in Table 2. This structure model gives $R_{1}=0.682$ for 4165 reflections with $F_{o}>4 \sigma\left(F_{o}\right)$ and 0.817 for all 4961 reflections. Distorted ReO_{6} octahedra form chains along [010] by common edges with alternating rheniumrhenium distances of 2.455 (1) and 3.219 (1) A (see Fig. 2). These chains are interconnected along [001] by TmO_{6} octahedra, linked by the O atoms, which form a common edge between the short rhenium-rhenium bonds. Following the notation of Table 2, Tm1 has octahedral coordination and the TmO_{6} octahedra are not linked to one another. On the other hand, Tm2 and Tm3 form monocapped trigonal prisms. Prisms of each type (either Tm2 or Tm3) form zigzag chains parallel to [010], with alternating orientation of the prisms within one chain, i.e. 'up' and 'down' with respect to the

Fig. 2. View on the $b c$ plane, displaying the chains of ReO_{6} octahedra along [010] and the short rhenium-rhenium bonds within. These chains are interconnected along [001] by TmO_{6} octahedra (Tm 1 in the notation of Table 1). In reciprocal space, the reflections of the two domains in the crystal are linked by a 180° rotation about the a^{*} axis. As a twofold rotation about an axis perpendicular to the $b c$ plane is a pseudo-symmetry, the observed twinning is consistent with the atomic arrangement.
isotropic displacement parameters $\left(\AA^{2}\right)$

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

Site
(Wyckoff
$\left.\begin{array}{llllll} & \begin{array}{l}\text { Site } \\ \text { (Wyckoff } \\ \text { notation) }\end{array} & x & & y & z\end{array}\right]=U_{\text {eq }}$.
$\left.\begin{array}{llllll} & \begin{array}{l}\text { Site } \\ \text { (Wyckoff } \\ \text { notation) }\end{array} & x & & y & z\end{array}\right]=U_{\text {eq }}$.
overcapped face (see Fig. 3). The capping oxygen is O1 for both TmO_{7} prisms, but shifted in opposite directions for Tm2 and Tm3. This results in significantly elongated edges $\mathrm{O} 1-\mathrm{O} 3$ ($3.361 \AA$ for Tm 2 and $3.296 \AA$ for Tm3) compared with the corresponding edges $\mathrm{O} 1-\mathrm{O} 4$ ($2.752 \AA$ for Tm 2 and $2.734 \AA$ for Tm3). The zigzag chains are interconnected along [001] by sharing edges $\mathrm{O} 3-\mathrm{O} 3$ and $\mathrm{O} 4-\mathrm{O} 4$.

The zigzag chains of TmO_{7} prisms containing Tm 2 and Tm3 are of very similar geometry, but differ with

Fig. 3. Zigzag chains of monocapped, trigonal prisms of TmO_{7}, running parallel to [010]. Chains with either Tm 2 or Tm 3 ions are linked to each other by common edges, $\mathrm{O} 3-\mathrm{O} 3(d=2.809 \AA)$ or $\mathrm{O} 4-\mathrm{O} 4$ $(d=2.799 \AA)$, respectively. Within one zigzag chain, the prisms are also interconnected by sharing edges, i.e. $\mathrm{O} 4-\mathrm{O} 4(d=2.876 \AA)$ for Tm 2 and $\mathrm{O} 3-\mathrm{O} 3(d=2.922 \AA)$ for Tm 3 . The orientations of the prisms alternate along [010] for both the Tm 2 and Tm 3 chains in phase. For clarity, the viewing direction on the $b c$ plane has been slightly tilted, through 15°, along the horizontal c axis.

Table 3. Comparison between the observed relative integrated intensities of reflections in powder diffraction experiments on ' $\mathrm{Yb}_{2} \mathrm{ReO}_{5}$ ' (Muller \& Roy, 1969), assumed to be actually $\mathrm{Yb}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, and on $\operatorname{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$

	$\mathrm{Yb}_{2} \mathrm{ReO}_{5}{ }^{\prime}$	$\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$
$(h k l)$	$I / I_{\max }(\%)$	$I / I_{\max }(\%)$
(001)	4	10
$(20 \overline{1})$	5	6
(201)	7	5
$(002),(20 \overline{2})$	20	18
(310)	90	100
$(11 \overline{2})$	100	98
(400)	21	17
(020)	8	17
$(112),(31 \overline{2})$	14	10
$(40 \overline{2}),(202)$	84	58
(021)	20	21
(220)	19	31
$(22 \overline{1})$	10	12
$(20 \overline{3})$	2	2
(221)	3	5
$(22 \overline{2}),(022)$	28	33
(510)	9	7
$(51 \overline{2}),(312)$	9	8
$(42 \overline{1})$	5	6
$(600),(42 \overline{2}),(222)$	43	35
$(20 \overline{4})$	48	22
(023)	8	6
(131)	2	3
$(42 \overline{3})$	5	5
$(33 \overline{1}),(330)$	7	9
$(13 \overline{2})$	16	8
$(71 \overline{2}),(512)$	50	11
$(223),(62 \overline{2}),(422)$		30
$(51 \overline{4}),(132),(114)$		26

respect to the connectivity scheme to TmO_{6} and ReO_{6} octahedra: each coordination polyhedron of Tm 2 is linked to four ReO_{6} octahedra, to two of them by common edges and to the other two by sharing corners. For Tm3, only two links to ReO_{6} octahedra exist, both by common edges and resulting in layers of TmO_{7} and ReO_{6} units parallel to the plane [201]. Each TmO_{6} octahedron has common edges with two TmO_{7} prisms for Tm3, interconnecting them along [100].

All structural aspects reported for $\mathrm{Ho}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ (Heumannskämper \& Jeitschko, 1987) are in agreement with the structure of $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, so that an isotypic relation is strongly supported. Furthermore, the same crystal structure has been reported for $\mathrm{Y}_{5} \mathrm{Mo}_{2} \mathrm{O}_{12}$ and $\mathrm{Gd}_{5} \mathrm{Mo}_{2} \mathrm{O}_{12}$ (Torardi et al., 1985).

The similarity of lattice parameters and the proposed centred monoclinic symmetry give rise to the specula-
tion that the assumed stoichiometries $\mathrm{Y}_{2} \mathrm{ReO}_{5}$, $\gamma-\mathrm{Gd}_{2} \mathrm{ReO}_{5}, \mathrm{Dy}_{2} \mathrm{ReO}_{5}, \mathrm{Er}_{2} \mathrm{ReO}_{5}$ and $\mathrm{Yb}_{2} \mathrm{ReO}_{5}$ (Muller \& Roy, 1969) are erroneous and should be $\operatorname{Ln}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$, $\mathrm{Ln}=\mathrm{Y}, \mathrm{Gd}, \mathrm{Dy}, \mathrm{Er}$ and Yb , crystallizing in the $\mathrm{Y}_{5} \mathrm{Mo}_{2} \mathrm{O}_{12}$ structure type described above. This assumption is further supported by the reported uncertainties in the estimation of the $\mathrm{Ln}_{2} \mathrm{ReO}_{5}$ stoichiometry, as the investigated samples were the result of an unsuccessful attempt to synthesize $\mathrm{Ln}_{2} \mathrm{Re}_{2} \mathrm{O}_{7}$ compounds and the twinning of all isolated crystals. However, the striking point is the similarity of reflection intensities given for a powder sample of ' $\mathrm{Yb}_{2} \mathrm{ReO}_{5}$ ' as compared to our results on $\mathrm{Tm}_{5} \mathrm{Re}_{2} \mathrm{O}_{12}$ (see Table 3). The same conclusions hold for the samples ' $\mathrm{Ln}_{2} \mathrm{ReO}_{5}$ ' studied by IR spectroscopy and X-ray diffraction (Savel'eva et al., 1977). Especially the interpretation of the absorption spectra, based on the assumption that the investigated compounds are of similar crystal structure as the alkaline earth metal uranates $M_{2} \mathrm{UO}_{5}$, are challenged by our results and should be reconsidered by taking structural details and the existence of metallic rhenium-rhenium bonds into account.

Financial support by the Bundesminister für Bildung und Forschung (05 SM8RDA), the Fond der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (Fu 125/33-1) is gratefully acknowledged.

References

Baud, G., Besse, J.-P., Chevalier, R. \& Gasperin, M. (1983). Mater. Chem. Phys. 8, 93-99.
Besse, J. P., Baud, G., Chevalier, R. \& Gasperin, M. (1978). Acta Cryst. B34, 3532-3535.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Heumannskämper, D. H. \& Jeitschko, W. (1987). Z. Kristallogr. 178, 99.
Longo, J. M. \& Sleight, A. W. (1968). Inorg. Chem. 7, 108-111. Morrow, N. L. \& Katz, L. (1968). Acta Cryst. B24, 1466-1471. Muller, O. \& Roy, R. (1969). Mater. Res. Bull. 4, 349-360.
Savel'eva, A. D., Varfolomeev, M. B., Fomichev, V. V. \& Petrov, K. I. (1977). Russ. J. Inorg. Chem. 22, 1628-1630.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Torardi, C. C., Fecketter, C., McCarroll, W. H. \& DiSalvo, F. J. (1985). J. Solid State Chem. 60, 332-342.

Torardi, C. C. \& Sleight, A. W. (1986). J. Less-Common Met. 116, 293-299.

